Mark schemes

Q1.

(a) 1.8×7 or 12.6
12.60

SC1 for 1260
(b) $1.8 \div 4$ or 0.45 or $180 \div 4$

$$
\begin{aligned}
& 4 \times 45=180 \\
& 4 \times 0.45=1.8
\end{aligned}
$$

45

Q2.
$y a \frac{1}{x}$ or $y=\frac{k}{x}$

$$
\text { oe } x y=k 2 a \frac{1}{5} \text { or } 2=\frac{k}{5}
$$

$$
k=10
$$

$$
\text { oe } 2=\frac{10}{5}
$$

$$
x y=10 \text { or } y=\frac{10}{x} \text { or } x=\frac{10}{y}
$$ oe

Q3.
(a) $y=\frac{k}{x^{2}}$ or $y \alpha \frac{1}{x^{2}}$
oe

$$
8=\frac{k}{3^{2}} \text { or } k=72
$$

This mark is for substituting 8 and 3 into their proportionality equation

$$
\begin{aligned}
& y=\frac{72}{x^{2}} \text { or } y x^{2}=72 \\
& \qquad \text { oe eg } \frac{y}{72}=\frac{1}{x^{2}}
\end{aligned}
$$

(b) $y=\frac{72}{12^{2}}$ $f t$ their equation from (a)

$$
\frac{1}{2} \text { or } 0.5
$$

Q4.
Alternative method 1
$h=k v^{2}$ or $5=k \times 10^{2}$
or $5 \div 10^{2}$ or $5: 10^{2}$
oe
$(k=) \frac{1}{20}$ or $(k=) 0.05$
or $h=\frac{1}{20} v^{2}$ or $h=0.05 v^{2}$
oe
Correct value for k
or correct equation in h and v
their $\frac{1}{20} \times 24^{2}$

$$
\frac{o e}{\frac{1}{20} \times 24^{2} \text { implies M1A1M1 }}
$$

28.8
ft their k and M1A0M1

Alternative method 2

$k h=v^{2}$ or $k \times 5=10^{2}$
or $10^{2} \div 5$ or $10^{2}: 5$
oe
$(k=) 20$ or $20 h=v^{2}$
oe
Correct value for k or correct equation or correct equation in h and v
$24^{2} \div$ their 20
oe
$24^{2} \div 20$ implies M1A1M1
28.8
ft their k and M1AOM1

Alternative method 3

$$
\begin{gathered}
\left(\frac{24}{10}\right)^{2} \text { or } \frac{576}{100} \text { or } 24^{2}: 10^{2} \\
\text { oe }
\end{gathered}
$$

$\frac{h}{5}=\left(\frac{24}{10}\right)^{2}$
oe
Correct equation in h
$5 \times$ their $\left(\frac{24}{10}\right)^{2}$
oe
$5 \times\left(\frac{24}{10}\right)^{2}$ implies M1A1M1
28.8
ft their $\left(\frac{24}{10}\right)^{2}$ and M1AOM1

Alternative method 4

$$
\left(\frac{10}{24}\right)^{2} \text { or } \frac{100}{576} \text { or } 10^{2}: 24^{2}
$$

$$
\frac{5}{h}=\left(\frac{10}{24}\right)^{2}
$$

oe
Correct equation in h
$5 \div$ their $\left(\frac{10}{24}\right)^{2}$
oe
$5 \div\left(\frac{10}{24}\right)^{2}$ implies M1A1M1
28.8
ft their $\left(\frac{24}{10}\right)^{2}$ and M1A0M1

Additional Guidance

$h \alpha v^{2}$ with no further valid working
$h=k v$ or $h=k v^{3}$ or $h=\frac{k}{v^{2}}$ etc not recovered

Up to first two marks can be awarded for correct working even if not subsequently used

Allow use of other letters

Q5.
$T=k^{\sqrt{l}}$
$1.6=k \sqrt{64}$ or $1.6=k \times 8$
$k=\frac{1.6}{\sqrt{64}}$ or $k=\frac{1.6}{8}$
or $k=0.2$
or $T=0.2 \sqrt{l}$
oe

```
( \(T=\) ) their \(0.2 \times \sqrt{132.25}\)
or ( \(T=\) ) their \(0.2 \times 11.5\)
Dependent on first two method marks
```

2.3
ft their 0.2 if M1M1M0M1 scored

Q6.
(a) $\quad w=3.5 y$
or
$w=k y$ and $k=3.5$
oe
31.5
(b) $w \alpha^{\frac{1}{x^{2}}}$ or $w=\frac{k}{x^{2}}$
oe
$5=\frac{k}{2^{2}}$ or $k=20$
or $w=\frac{20}{x^{2}}$
oe
0.2
$o e$
(c) D

Q7.
(a) C
(b) $y \propto \sqrt{x}$ or $y=k \sqrt{x}$

$$
\begin{aligned}
& \text { oe } \\
& \text { or } \quad c y=\sqrt{x}
\end{aligned}
$$

$$
\begin{aligned}
& 36=k \sqrt{100} \\
& \text { or } k=3.6 \\
& \text { or } y=3.6 \sqrt{x} \\
& \qquad \begin{array}{l}
\text { oe } \\
\\
36 c=\sqrt{100} \\
\text { or } c=\frac{5}{18} \text { or } 0.277 \ldots \\
\text { or } \frac{5}{18} y=\sqrt{x}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 3.6 \times \sqrt{250} \\
& \text { or } 56.9(\ldots) \\
& \quad \text { oe } \\
& \qquad \sqrt{250} \div \frac{5}{18}
\end{aligned}
$$

57

Q8.
Alternative method 1
$2=k \sqrt{36}$ or $\sqrt{36}=6$
$(k=) 2 \div$ their 6 or $\frac{1}{3}$
$5 \div$ their $\frac{1}{3}$ or $15(\sqrt{a}=)$
oe

225

Alternative method 2

$2 k=\sqrt{36}$ or $\sqrt{36}=6$
($k=$) their $6 \div 2$ or 3
$5 \times$ their 3 or $15(\sqrt{a}=)$
oe

225

Alternative method 3

$2 k=\sqrt{36}$ or $\sqrt{36}=6$
M1
$5 \div 2$ or 2.5
their $6 \times$ their 2.5 or $15(\sqrt{a}=)$ dep on M1 M1

Q9.
(a)
$y \propto \frac{1}{x^{2}}$ or $y=\frac{k}{x^{2}}$
oe
$20=\frac{k}{2^{2}}$
or $(k=) 2^{2} \times 20$
or $(k=) 80$
or $\left(\frac{1}{k}=\right) \frac{1}{80}$
oe
$y=\frac{80}{x^{2}}$
oe

Additional Guidance
$y \propto \frac{k}{x^{2}}$
(b) $5=\frac{80}{x^{2}}$
or $x^{2}=16$
oe
ft their equation from part (a)

4
Condone 4 and -4

